Section 10.2: Ellipses

Video 1: Ellipses Centered at the Origin

1) Graph the ellipse. Find the foci and list the domain/range.

$$
9 x^{2}+4 y^{2}=36
$$

2) Graph the ellipse. Find the foci and list the domain/range.

$$
x^{2}=16-4 y^{2}
$$

Video 2: Finding the Equation of an Ellipse Centered at the Origin

3) Find the equation of an ellipse that has a major axis with length 20 and foci at $(6,0)$ and $(-6,0)$.
4) Find the equation of an ellipse that has a minor axis with length 18 and foci at $(0,4)$ and $(0,-4)$.

Video 3: Graphing a Half-Ellipse
5) Graph. Find the foci and list the domain/range.

$$
\frac{y}{2}=-\sqrt{1-\frac{x^{2}}{25}}
$$

Video 4: Graph an Ellipse Translated Away from the Origin
6) Graph the ellipse. Find the foci and list the domain/range.

$$
\frac{(x-4)^{2}}{25}+\frac{(y+1)^{2}}{9}=1
$$

7) Graph the ellipse. Find the foci and list the domain/range.

$$
\frac{x^{2}}{4}+\frac{(y-3)^{2}}{36}=1
$$

Video 5: Rewriting the Equation of an Ellipse in Standard Form (Completing the Square)
8) Graph the ellipse. Find the foci and list the domain/range.

$$
9 x^{2}+72 x+16 y^{2}-128 y=-256
$$

Video 6: Eccentricity

The eccentricity of an ellipse is given by the formula $e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a}$.
The eccentricity is always between 0 and 1 . When e is close to 0 , the graph is close to a circle.
9) Find the eccentricity of $\frac{x^{2}}{49}+\frac{y^{2}}{4}=1$.
10) Find the eccentricity of $36(x-7)^{2}+25(y+2)^{2}=900$.

